471. Molecular Polarisability. The Conformations of cycloHeptanone and of Certain Other Cyclic Ketones.
By (Mrs.) C. G. Le Fèvre, R. J. W. Le Fèvre, and B. Purnachandra Rao.

Assumptions previously made in elucidating the structures of cyctopentanone, cyclohexanone, and (\pm)-camphor from molar Kerr constant data are now justified by the determination of the molecular anisotropies $\left(10^{3}{ }_{\infty} \delta_{2}{ }^{2}\right)$ at infinite dilution in carbon tetrachloride. The values found are $\mathbf{3 1 \cdot 1 _ { 3 }}, 11 \cdot 6_{0}$, and $\mathbf{3 9 . 8} \mathbf{8}_{4}$ respectively, and for cycloheptanone $27 \cdot 0_{8}$. $\infty\left({ }_{m} K_{2}\right)$ of cycloheptanone is 156.8×10^{-12} in carbon tetrachloride at 25°; The structure of this ketone is discussed.

Stereostructures for cyclopentanone, cyclohexanone, and camphor were specified by Le Fèvre and Le Fèvre ${ }^{1}$ in 1956. The supporting evidence in each case depended effectively on agreement between the values of b_{1}, b_{2}, and b_{3} (the three tensor components defining the polarisability ellipsoid of a molecule) derived from the experimental molar

[^0]Kerr constant, and those computed from a knowledge of the constituent link polarisabilities and stereochemistry of the appropriate 5 - or 6 -ring structure. In the deduction of b_{1}, b_{2}, and b_{3} from the expression ${ }_{\mathrm{m}} K_{\text {expt. }}=2 \pi \boldsymbol{N}\left(\theta_{1}+\theta_{2}\right) / 9$ (for expansions of θ_{1}, θ_{2}, etc., and definitions of other symbols, see ref. 2), however, there was no information on light scattering then available by means of which the small term θ_{1} could be separated from the comparatively large θ_{2}, and accordingly an estimate of θ_{1} was made for each substance.

The introduction by Le Fèvre and Purnachandra Rao ${ }^{2}$ of a procedure whereby the molecular anisotropy, $\delta_{2}{ }^{2}$, of a solute can be determined at infinite dilution has changed the situation; θ_{1} is easily accessible from $\delta_{2}{ }^{2}$, and a complete analysis of the results in ref. 1 is now possible. The present paper deals with this matter and also extends the investigation to cycloheptanone.

Experimental

Materials.-cycloHeptanone (L. Light and Co. Ltd.) was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and distilled, b. p. $180^{\circ} / 760 \mathrm{~mm}$. Other solutes were those used by Le Fèvre and Le Fèvre. ${ }^{1}$ Carbon tetrachloride ("sulphur free') was stored over calcium chloride, after fractionation through a 1 metre column packed with glass helices.

Apparatus and Methods.-Details have been given for depolarisation factors, ${ }^{2}$ dielectric constants, ${ }^{3}$ electric double refractions, ${ }^{4,5}$ and extrapolation procedures and calculations. ${ }^{2,4,5,6,7}$ Solutions were made up by weight and concentrations expressed as molar fractions for the depolarisation observations and as weight fractions for the others. Measurements are set out in Tables 1 and 2, in which symbols have the following meanings: f molar fraction, Δ depolaris-

Table 1. Depolarisation factors of solutions in carbon tetrachloride.*

Table 2. Kerr effects, dielectric polarisations, etc., for solutions of cycloheptanone in carbon tetrachloride.*

$10^{5} w_{2}$	$10^{7} \Delta B$	ε^{25}	d_{4}^{25}	$10^{5} w_{2}$	$10^{7} \Delta B$	$10^{4} \Delta n$
674	0.097	$2 \cdot 3402$	1.57766	2007	0.259	4
1024	0.141	$2 \cdot 3990$	1.57409	2362	0.304	5
1227	0.163	$2 \cdot 4331$	1.57201	3253	0.419	7
1444	0.196	$2 \cdot 4696$	1.56980	4228	0.542	9

whence $\quad{ }^{10} 0^{7} \Delta B=13.51 w_{2}-17.7 w_{2}{ }^{2}$, and $\delta=193.0 ; \Sigma \Delta n / \sum w_{2}=\Sigma 0.0211$, and $\gamma=0.014_{5}$ $\Sigma \Delta \varepsilon / \sum w_{2}=16.80 ; \sum \Delta d / \sum w_{2}=-1.020_{8}$, and $\beta=-0.644_{2}$.
Therefore ${ }_{\infty}\left({ }_{\mathrm{m}} K_{2}\right)=156.8 \times 10^{-12}$ and ${ }_{\infty} P_{2}=233.4$ c.c.

* For $w_{2}=0, B_{1}=0.070 \times 10^{-7}, n_{\mathrm{D}}^{25}=1 \cdot 5475, \varepsilon_{1}^{25}=2 \cdot 2270, d_{4}^{52}=1 \cdot 58454$.
ation factor, $\delta_{2}{ }^{2}$ molecular anisotropy, w weight fraction, ε dielectric constant, d density, $\Delta \Delta$, ΔB, and Δn the differences respectively of depolarisation factors, Kerr constants, and refractive indexes between solution and pure solvent. Suffixes 1, 2, or 12 indicate, in order, solvent,

[^1]${ }^{3}$ Buckingham, Chau, Freeman, Le Fèvre, Narayana Rao, and Tardif, J., 1956, 1405.
${ }^{4}$ Le Fèvre and Le Fè̀vre, Rev. Pure and Appl. Chem., 1955, 5, 261.
${ }^{5}$ Le Fèvre and Le Fèvre, $J ., 1953,4041$.
${ }^{6}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd Edn., 1953.
${ }^{7}$ Harris, Le Fèvre, and Sullivan, J., 1953, 1622.
solute, or solution; δ without a suffix denotes the constant in the equation for the Kerr effect of a solution, $B_{12}=B_{1}\left(1+\delta w_{2}\right)$ and (cf. ref. 4, p. 283) is to be distinguished from $\delta_{2}{ }^{2}$ which is the " molecular anisotropy" of a solute; θ_{1} and θ_{2} are the " anisotropy" and " dipole" terms contained in the molar Kerr constant, ${ }_{\mathrm{m}} K$; their suffixes have no reference to the components of a mixture. Polarisations, total, or electronic or distortion, molecular refractions, and dipole moments are represented conventionally by P or $_{\mathrm{E}} P$ or $_{\mathrm{D}} P, R$, and μ. Extrapolated values for solutes at infinite dilution are shown thus: ${ }_{\infty} P_{2}, \infty\left(\mathrm{~m} K_{2}\right), \infty \delta_{2}{ }^{2}$, etc.

Discussion

Dipole Moment of cycloHeptanone.-The observed total polarisation (233.4 c.c.) at infinite dilution in carbon tetrachloride at 25° in conjunction with a distortion polarisation of 34.0 c.c. (i.e., $1.05 R_{\mathrm{D}}$) corresponds to a dipole moment of $3 \cdot 1_{2} \mathrm{D}$. Such a result is in good agreement with the only value ($3 \cdot 1_{0} \mathrm{D}$) previously recorded. ${ }^{8}$ The polarity of cycloheptanone is thus ${ }^{1} 0.1 \mathrm{D}$ greater than that of cyclopentanone and 0.02 D less than that of cyclohexanone, which among the cyclanones so far examined ${ }^{8}$ exhibits the maximum moment.

Anisotropy Terms.--These have been calculated (see Table 3) by the equation

$$
\theta_{1}=\left({ }_{\infty} \delta_{2}^{2}\right)\left(b_{1}+b_{2}+b_{3}\right)^{2} Q / 45 \boldsymbol{k} T
$$

where $Q={ }_{\mathrm{D}} P /{ }_{\mathrm{E}} P$, and $T=$ absolute temperature; $\left(b_{1}+b_{2}+b_{3}\right)$ is obtained from the electronic polarisation as $9\left(_{\mathrm{E}} P\right) / 4 \pi \boldsymbol{N}$. Le Fèvre and Le Fèvre, ${ }^{1}$ lacking the depolarisation data now available, adopted 1×10^{-35} as an approximation for θ_{1} for cyclopentanone, cyclohexanone, and camphor. It is now clear that only in the last-named case was the assumed magnitude seriously incorrect; even so the effect on the estimations of b_{1} and $\left(b_{2}+b_{3}\right)$ is slight.

Table 3. Calculation of anisotropy terms $\left(\theta_{1}\right)$ for four cyclic ketones.

	$10^{3} \delta_{2}{ }^{2}$	${ }_{\mathrm{D}} P$ (c.c.) *	${ }_{\mathrm{E}} P$ (c.c.)	$10^{35} \theta_{1}$
cycloPentanone	31.13	$24 \cdot 48$	$22.79 \dagger$	1.31
cycloHexanone	11.60	29.26	$27.25 \dagger$	$0 \cdot 70$
cycloHeptanone	27.08	33.98	$31.62 \dagger$	$2 \cdot 22$
(\pm)-Camphor	39.84	$46 \cdot 20$	$43.74 \dagger$	$6 \cdot 40$
* ${ }_{\mathrm{D}} P=$	refra	given by	\dagger Cf.	

Polarisability Ellipsoids.-Information requisite for the evaluation of these is in Table 4. The semi-axes obtained are in the three right-hand columns.

Table 4. Calculation of semi-axes of the molecular polarisability ellipsoids for four cyclic ketones.

	$10^{35}\left(\theta_{1}+\theta_{2}\right)$	$10^{23}\left(b_{1}+b_{2}+b_{3}\right)$	μ (D)	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$
cycloPentanone	35.11*	2.694**	3.02 *	0.99	1.03	$0.67{ }_{5}$
cycloHexanone	43.80*	3.221 *	3.14*	$1 \cdot 18{ }_{5}$	$1 \cdot 12$	0.915
cycloHeptanone	$37 \cdot 29 \dagger$	$3 \cdot 760 \dagger$	3.12 \dagger		See text	
(\pm)-Camphor .	27.36*	5.201*	$3 \cdot 09$ *	$1 \cdot 79$	$2 \cdot 13$	$1 \cdot 285$

For camphor, b_{1} emerges as 1.79×10^{-23} and $\left(b_{2}+b_{3}\right)$ as $3.41_{5} \times 10^{-23}$, in good accord with the earlier ${ }^{1}$ estimates (involving a speculative θ_{1}) of 1.80×10^{-23} and 3.40×10^{-23} c.c. respectively.

On pp. 3552 and 3556 of ref. 1 equations are given for the three semi-axes of cyclopentanone and cyclohexanone in terms of the polarisabilities of the corresponding hydrocarbons, of the $\mathrm{C}-\mathrm{H}$ link, and of the $\mathrm{C}=\mathrm{O}$ bond. Regarding the last, only approximate magnitudes of the longitudinal, transverse, and " vertical " (see p. 300 of ref. 4) polarisabilities were available in 1956. However, consequent upon the determination of $\delta_{\infty}{ }_{2}{ }^{2}$ for acetone by Le Fèvre and Purnachandra Rao, ${ }^{2}$ and the re-evaluation of the molecular

[^2]polarisability ellipsoid for this ketone, $b_{\mathrm{L}}{ }^{\mathrm{C}=0}, b_{\mathrm{T}}{ }^{\mathrm{C}=0}$, and $b_{\mathrm{V}}{ }^{\mathrm{C}=0}$ can now be computed as $0.230_{5}, 0.140_{5}$, and 0.046×10^{-23} c.c. respectively. (The calculation is based on the trigonal structure of acetone reported by Allen, Bowen, Sutton, and Bastiansen. ${ }^{\mathbf{1 1} \text {) }}$

Insertion of these bond semi-axes into the equations mentioned a few lines above yields the following results:

$10^{23} b_{1}$	cycloPentanone		cycloHexanone	
	Calc.	Obs.	Calc.	Obs.
	0.99	0.99	$1 \cdot 18$	$1{ }_{5}$
$10^{23} b_{2}$	0.98	1.03	1.13	$1 \cdot 12{ }^{\text {b }}$
$10^{23} b_{3}$	0.73	0.675	0.94	$0.91{ }_{5}$

There is the possibility that the $\mathrm{C}=\mathrm{O}$ group in acetone may not be electrically identical with those of the cyclic ketones. However, the agreement between prediction and measurement for cyclohexanone indicates that any such variation cannot be large, while the greater deviation between b_{3} calc. and b_{3} obs. for cyclopentanone could arise from the fact that the 5 -ring is slightly less non-planar than previously calculated by Le Fèvre and Le Fèvre. ${ }^{1}$ This matter will be considered elsewhere.

Conformation of cycloHeptanone.-A 7-membered ring cannot have a regular structure. There are however in the case of cycloheptanone two factors which must limit the number of possible configurations. These are (a) the mutual repulsions between the links attached to neighbouring carbon atoms, and (b) the tendency within the molecule to retain as tetrahedral the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles.

If, therefore, one denotes as C_{1} the carbon atom which is part of the $\mathrm{C}=\mathrm{O}$ dipole, and as $\mathrm{C}_{2} \cdots \mathrm{C}_{7}$ the remaining carbon atoms in the cycloheptanone ring, it is reasonable to assume that $\mathrm{C}_{2} \cdots \mathrm{C}_{7}$ with their associated bonds will lie in relation to one another as closely as is possible to those relative positions in which they lie in the " chair " form of cyclohexane.

The number of possible stereoforms of cycloheptanone is then given by the number of ways in which C_{1} can be interpolated into a "chair " $\mathrm{C}_{2} \cdots \mathrm{C}_{7}$ ring system with the minimum relative disturbance of adjacent $\mathrm{C}-\mathrm{H}$ dipoles. This can be illustrated by Catalin models.

The representation commonly written (I) can be criticised because the pairs of $\mathrm{C}-\mathrm{H}$ links at X and Y are not " staggered." Mirror-image forms being ignored, there appear to be two conformations derivable from (I) which satisfy the requirements (a) and (b). The first of these (A) is obtained by placing the $\mathrm{C}=\mathrm{O}$ group at either X or Y , the second
 (B) by twisting XY anticlockwise, about a line through the midpoint of XY and the carbonyl carbon atom, and allowing consequential rotational readjustments of other carbon atoms to occur. The models so generated can be described as follows: in A, carbon atoms $\mathrm{C}_{2}, \mathrm{C}_{4}$, and C_{6} and $\mathrm{C}_{3}, \mathrm{C}_{5}$, and C_{7} lie in two parallel planes; in B, if carbon atoms 1,2 , and 7 define a basal plane, the heights of the remaining carbon atoms above this plane are in the order $4<5<3<6$.

For $A, \mu_{\text {resultant }}$ acts along one of the principal axes, and in the expression

$$
\theta=\left[\left(\mu_{1}^{2}-\mu_{2}^{2}\right)\left(b_{1}-b_{2}\right)+\left(\mu_{2}^{2}-\mu_{3}^{2}\right)\left(b_{2}-b_{3}\right)+\left(\mu_{3}^{2}-\mu_{1}^{2}\right)\left(b_{3}-b_{1}\right)\right] / 45 \boldsymbol{k}^{2} T^{2}
$$

$\mu_{\text {ressultant }}=\mu_{1}$ and $\mu_{2}=\mu_{3}=0$. Accordingly, following the usual procedure, we should extract $b_{1}=1.34_{5}, b_{2}=1.45$, and $b_{3}=0.97 \times 10^{-23}$ from our measurements, while the corresponding quantities computed from link polarisabilities would be $1.38,1 \cdot 32$, and $1 \cdot 06_{5} \times 10^{-23}$ respectively. The disagreement between the found and calculated values of b_{2} and (particularly) b_{3} indicate that structure A is incorrect. In fact, if $\mu_{\text {resultant }}$ lies along a principal axis, the smallest predictable b_{3} would be 1.01×10^{-23}, corresponding to a completely planar configuration for the molecule-an idea not seriously advanced.

For B, because the precise position of C_{1} with reference to the C_{2}, C_{4}, C_{6} and C_{3}, C_{5}, C_{7} planes is not known, the magnitudes of μ_{1}, μ_{2}, and μ_{3} cannot be calculated, and accordingly 11 Allen, Bowen, Sutton, and Bastiansen, Trans. Faraday Soc., 1952, 48, 991.
it is not possible to evaluate b_{1}, b_{2}, and b_{3} from the experimental observations and to confirm by computation. The results for cycloheptanone exclude a structure of type A, but cannot give a complete interpretation of one of type B. They will therefore have to be left in terms of θ_{1} and θ_{2} until further information concerning the molecule is forthcoming from other sources. It is perhaps relevant, and a point favouring B, that of structures A and B only the latter has $\mathrm{C}-\mathrm{H}$ bonds on carbon atoms 3 and 6 appropriately directed for bridging by $>$ NR to give the skeleton of the tropinones.

The award by the Nuffield Foundation of a research scholarship to B. P. R. is gratefully acknowledged.

University of Sydney, N.S.W., Australia.
[Received, November 10th, 1958.]

[^0]: ${ }^{1}$ Le Fèvre and Le Fèvre, J., 1956, 3549.

[^1]: ${ }^{2}$ Le Fèvre and Purnachandra Rao, J., 1957, 3644.

[^2]: ${ }^{8}$ Günthard and Gäumann, Helv. Chim. Acta, 1951, 34, 39.
 ${ }^{9}$ Vogel, J., 1938, 1323.
 ${ }^{10}$ Wetterfors, Z. Physik, 1922, 8, 229.

